15 research outputs found

    Integrated silicon photonic packaging

    Get PDF
    Silicon photonics has garnered plenty of interests from both the academia and industry due to its high-speed transmission potential as well as sensing capability to complement silicon electronics. This has led to significant growth on the former, valuing at US626.8Min2017andisexpectedtogrow3foldtoUS 626.8M in 2017 and is expected to grow 3-fold to US 1,988.2M by 2023, based on data from MarketsandMarkets™. Silicon photonics’ huge potential has led to worldwide attention on fundamental research, photonic circuit designs and device fabrication technologies. However, as with silicon electronics in its early years, the silicon photonics industry today is extremely fragmented with various chip designs and layouts. Most silicon photonic devices fabricated are not able to reach the hand of consumers, due to a lack of information related to packaging design rules, components and processes. The importance of packaging technologies, which play a crucial role in turning photonic circuits and devices into the final product that end users can used in their daily lives, has been overlooked and understudied. This thesis aims to – 1. fill the missing gap by adapting existing electronics packaging techniques, 2. assess its scalability, 3. assess supply chain integration and finally 4. develop unique packaging approaches specifically for silicon photonics. The first section focused on high density packaging components and processes using University of California, Berkeley’s state-of-the-art silicon photonic MEMS optical switches as test devices. Three test vehicles were developed using (1) via-less ceramic and (2) spring-contacted electrical interposers for 2D integration and (3) through-glass-via electrical interposers for 2.5D heterogeneous integration. A high density (1) lidless fibre array and (2) a 2D optical interposer, which allows pitch-reduction of optical waveguides were also developed in this thesis. Together, these components demonstrated the world’s first silicon 2 photonic MEMS optical switch package and subsequently the highest density silicon photonic packaging components with 512 electrical I/Os and 272 optical I/Os. The second section then moved away from active optical coupling that was used in the former, investigating instead passive optical packaging concepts for the future. Two approaches were investigated - (1) grating-to-grating and (2) evanescent couplings. The former allows the development of pluggable packages, separating fibre coupling away from the device while the latter allows simultaneous optical and electrical packaging on a glass wafer in a single process. Lastly, the knowhow and concepts developed in this thesis were compiled into packaging design rules and subsequently introduced into H2020-MORPHIC, PIXAPP packaging training courses (as a trainer) and other packaging projects within the group

    Co-optimizing grating couplers for hybrid integration of InP and SOI photonic platforms

    Get PDF
    Grating couplers are widely used optical interfaces in integrated photonics, especially on the Silicon-On-Insulator (SOI) platform. Their design has been optimized for coupling light between a Photonic Integrated Circuit (PIC) and a single-mode fiber, a µlens for free space transport, or even a second PIC in the same SOI platform. In this work, we co-design matching pairs of grating-couplers on distinct SOI and InP photonic platforms for optimized PIC-to-PIC coupling. By matching the scattering strengths of the two grating-couplers, we show that a PIC-to-PIC insertion loss of 3dB can be achieved. We also investigate how the design parameters impact the coupling efficiency and the bandwidth, ending up with a tolerance analysis. The proposed coupling approach between two different waveguide materials has prospective applications for the hybrid-integration of SOI and InP photonic platforms for communication technologies

    Pluggable silicon photonic MEMS switch package for data centre

    Get PDF
    Consumers' thirst for data has led to the development of various silicon photonic switching devices that are highly scalable while maintaining their relatively compact form factor at the same time. This demands a paradigm shift in the way these devices are being packaged, as optical and electrical ports are involved. In this article, we proposed a pluggable silicon photonic MEMS switch package with passive optical coupling assembly. This approach shifts fibre coupling away from the package, keeping it “purely electrical.” The pluggable concept is separately demonstrated through spring contacted hybrid assembly and pairs of vertically stack surface gratings. Insertion losses are comparable to planar fibre-to-grating coupling, with relatively broadband transmission and assembly tolerance

    Flip chip packaging of digital silicon photonics MEMS Switch for cloud computing and data centre

    Get PDF
    We report on the flip chip packaging of Micro-Electro-Mechanical System (MEMS)-based digital silicon photonic switching device and the characterization results of 12 × 12 switching ports. The challenges in packaging N2 electrical and 2N optical interconnections are addressed with single-layer electrical redistribution lines of 25 µm line width and space on aluminum nitride interposer and 13° polished 64-channel lidless fiber array (FA) with a pitch of 127 µm. 50 µm diameter solder spheres are laser-jetted onto the electrical bond pads surrounded by suspended MEMS actuators on the device before fluxless flip-chip bonding. A lidless FA is finally coupled near-vertically onto the device gratings using a 6-degree-of-freedom (6-DOF) alignment system. Fiber-to-grating coupler loss of 4.25 dB/facet, 10–11 bit error rate (BER) through the longest optical path, and 0.4 µs switch reconfiguration time have been demonstrated using 10 Gb/s Ethernet data stream

    128 × 128 silicon photonic MEMS switch package using glass interposer and pitch reducing fibre array

    Get PDF
    We design and fabricate the packaging of 128 × 128 silicon photonic MEMS switch device using through glass via (TGV) interposer and pitch reducing fibre array. The switch device contains 16384 MEMS switch cells and 272 grating couplers spaced at 63.5 μm in a compact footprint of 17.4 mm × 16 mm. The apodised grating couplers designed for 1300 nm have an insertion loss of 2.5 dB/facet at 10° coupling angle. The 0.5 mm thick glass interposer contains 512 electrical vias while the pitch reducing optical coupling array is polished to 40° for planar coupling

    Silicon photonic MEMS: exploiting mechanics at the nanoscale to enhance photonic integrated circuits

    Get PDF
    With the maturing and the increasing complexity of Silicon Photonics technology, novel avenues are pursued to reduce power consumption and to provide enhanced functionality: exploiting mechanical movement in advanced Silicon Photonic Integrated Circuits provides a promising path to access a strong modulation of the effective index and to low power consumption by employing mechanically stable and thus non-volatile states. In this paper, we will discuss recent achievements in the development of MEMS enabled systems in Silicon Photonics and outline the roadmap towards reconfigurable general Photonic Integrated Circuits

    Presentations of patients of poisoning and predictors of poisoning-related fatality: Findings from a hospital-based prospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Poisoning is a significant public health problem worldwide and is one of the most common reasons for visiting emergency departments (EDs), but factors that help to predict overall poisoning-related fatality have rarely been elucidated. Using 1512 subjects from a hospital-based study, we sought to describe the demographic and clinical characteristics of poisoning patients and to identify predictors for poisoning-related fatality.</p> <p>Methods</p> <p>Between January 2001 and December 2002 we prospectively recruited poisoning patients through the EDs of two medical centers in southwest Taiwan. Interviews were conducted with patients within 24 hours after admission to collect relevant information. We made comparisons between survival and fatality cases, and used logistic regressions to identify predictors of fatality.</p> <p>Results</p> <p>A total of 1512 poisoning cases were recorded at the EDs during the study period, corresponding to an average of 4.2 poisonings per 1000 ED visits. These cases involved 828 women and 684 men with a mean age of 38.8 years, although most patients were between 19 and 50 years old (66.8%), and 29.4% were 19 to 30 years. Drugs were the dominant poisoning agents involved (49.9%), followed by pesticides (14.5%). Of the 1512 patients, 63 fatalities (4.2%) occurred. Paraquat exposure was associated with an extremely high fatality rate (72.1%). The significant predictors for fatality included age over 61 years, insufficient respiration, shock status, abnormal heart rate, abnormal body temperature, suicidal intent and paraquat exposure.</p> <p>Conclusion</p> <p>In addition to well-recognized risk factors for fatality in clinical settings, such as old age and abnormal vital signs, we found that suicidal intent and ingestion of paraquat were significant predictors of poisoning-related fatality. Identification of these predictors may help risk stratification and the development of preventive interventions.</p

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Photonic Packaging: Transforming Silicon Photonic Integrated Circuits into Photonic Devices

    No full text
    Dedicated multi-project wafer (MPW) runs for photonic integrated circuits (PICs) from Si foundries mean that researchers and small-to-medium enterprises (SMEs) can now afford to design and fabricate Si photonic chips. While these bare Si-PICs are adequate for testing new device and circuit designs on a probe-station, they cannot be developed into prototype devices, or tested outside of the laboratory, without first packaging them into a durable module. Photonic packaging of PICs is significantly more challenging, and currently orders of magnitude more expensive, than electronic packaging, because it calls for robust micron-level alignment of optical components, precise real-time temperature control, and often a high degree of vertical and horizontal electrical integration. Photonic packaging is perhaps the most significant bottleneck in the development of commercially relevant integrated photonic devices. This article describes how the key optical, electrical, and thermal requirements of Si-PIC packaging can be met, and what further progress is needed before industrial scale-up can be achieved
    corecore